인공 소구경 혈관*(이하 SDV)에 대한 높은 임상적 수요로 인해 상용화 제품이 많이 개발된 상태다. 그러나 기존 인공 SDV는 대부분 내피가 없어 혈전*을 유발한다는 한계가 있으며, 균일한 내피층을 가지면서 충분한 기계적 성질까지 갖춘 인공 SDV를 제작하기는 매우 어려웠다.*소구경 혈관(Small Diameter Vascular) : 인공 혈관 중 지름의 길이가 5mm 이하인 경우를 소구경 혈관이라고 한다. *혈전 : 혈관 내에서 혈액 성분이 국소적으로 응고해서 생기는 덩어리를 말한다.최근 POSTECH(포항공과대학교) 기계공학과 · IT융합공학과 · 생명과학과 · 융합대학원 장진아 교수, IT융합공학과 남효영 연구교수, 원광대 기계공학부 이승재 교수, 기계공학과 정훈진 박사 공동 연구팀은 최첨단 드래깅 3D 프린팅 기술을 이용해 기공(구멍)이 있는 SDV를 만들고, 이를 통해 내피를 형성하는 데 성공했다. 이 연구는 국제 학술지인 ‘바이오액티브 머티리얼즈(Bioactive Materials)’에 게재됐다.   연구팀은 추가 재료나 장치 없이 기공이 있는 구조체를 제작하면서 기공 크기까지 자유롭게 제어할 수 있는 드래깅 3D 프린팅 기술(Dragging technique)*을 개발했다. 이 기술을 이용해 다공성 · 다층 구조를 갖는 인공 SDV를 제작하고, 인간 탯줄 정맥 내피 세포*(이하 HUVECs)와 인간 대동맥 평활근세포*(HAoSMCs)를 천연 고분자 바이오잉크(bio-ink)와 혼합해 내부에 주입했다. 그 결과, HUVECs은 기공을 통해 인공 SDV의 가장 안쪽 층으로 이동해 내피를 형성했으며, 이러한 결과는 기공 크기에 따라 달라졌다. *드래깅 기술(Dragging technique) : 별도의 회전축이 필요하지 않아 나선형과 지그재그형, 별 모양, Y자형 등 자유롭게 모양을 형성하는 3D 프린팅 기술이다.*인간 탯줄 정맥 내피 세포(HUVECs) : Human umbilical vein endothelial cells*인간 대동맥 평활근세포(HAoSMCs) : Human Aortic Smooth Muscle Cells   연구팀은 인공 SDV 내피 표면의 최대 97.68 ± 0.4%까지 덮는 데 성공했다. 또, 해당 내피가 혈소판 유착을 방지하는 것까지 확인했다. 추가 공정 없이 기공만으로 스스로 내피를 형성할 수 있는 인공 SDV를 개발한 것이다. 장진아 교수는 “첨단 드래깅 3D 프린팅 기술과 HUVECs이 가진 특성을 이용해 자발적인 세포 조립을 유도하는 SDV(Spontaneous cellular assembly SDV, S-SDV)를 제작한 연구는 이번이 처음”이라며, “안정성과 기계적 특성이 보장되어 이식에도 적합할 뿐 아니라 향후 가지(branch)나 곡선(curve) 등 복잡한 모양의 혈관 구조체에서도 내피를 형성하는 데 유용할 것”이라는 말을 전했다.한편, 이 연구는 과학기술정보통신부와 한국연구재단, 보건복지부의 범부처 재생의료기술개발사업, 산업통상자원부 및 산업기술평가관리원(KEIT), 한국보건산업진흥원의 보건의료기술 연구개발사업 지원으로 진행됐다.
주메뉴 바로가기 본문 바로가기